Changes

Precharge Theory

3,298 bytes added, 02:29, 31 March 2020
link update
The following describes the [[BMS/Precharge|precharge]] function of the [[BMS]].

;Context
[[File:No precharge.jpg|right|300px]]

The attached circuit fragment shows the [[Main Contactor|contactor]] in the yellow box, which consists of a control or '''coil''' side and an electrically isolated load or '''contact''' side.
* The dashed lines in the middle represent the electromagnetic core of the contactor.
;Coil Side
* SW1 is the controlling switch for the contactor, typically a transistor instead of a mechanical switch.
* When SW1 closes, it energizes the contactor core, pulling the armature of the contactor to close it.
* When SW1 opens, this magnetic field contains energy which must be safely dissipated to avoid destroying things with a large voltage spike.
*: Usually the switch itself is what's destroyed.
* That's the function of the "flyback" or "kickback" diode shown.
;Load Side
* The capacitor shown is typically a very large value "bypass" capacitor which is needed as a reservoir for the battery current.
*: It smooths out and quiets down the voltage transients on the high-power circuitry, which can be very severe when you're driving 500+ amps through an electric motor.
*: Capacitors on your typical printed circuit board range in the sub-microfarad range to maybe a few microfarads, but in applications like this, bypass capacitors are almost always in the millifarad range or may even approach a farad.
*: That's a ''ton'' of capacitance, designed with high-current wiring to handle hundreds of amps.
* The problem is when the capacitor is discharged, close to 0 volts, and the contactor is closed, full battery voltage essentially instantaneously applies to the circuit.
* That's a voltage difference between the battery and discharged capacitors of >100V, which results in a giant, fat blue spark inside the contactor just before the contacts close.
* That spark can easily represent enough energy to momentarily melt the contact material (copper), and as the contacts slap together, they cool rapidly and actually weld to each other.
* Needless to say, you do '''not''' want your contactor contacts welded together.

;Precharge Circuit
[[File:Precharge.jpg|right|400px]]

To prevent the damage described above, engineers add a power resistor and external switch around the load contacts, to "precharge" the bypass caps. See attached circuit fragment.

The resistor value varies, but a few hundred ohms is typical, and it does dissipate some heat (though only for a short time), so it's a bigger resistor than you'll find in most applications.
* On startup, SW2 is closed immediately.
*: The inline resistor limits the current through it to a very small value, even when the capacitors are at a very different voltage than the battery.
*: This prevents sparking damage to SW2.
* For several seconds, a charging current is applied through the resistor to the bypass capacitors. This is called ''precharging''.
* When the voltages sensed across the contactor are close enough to avoid damage, SW1 activates contactor to close it.

;References
: [https://en.wikipedia.org/wiki/Pre-charge Wikipedia Article on Pre-Charge]
: [http://electricmotorcycleforum.com/boards/index.php?topic=7040 New contactor, and coil suppression diode] forum thread, by Doug S

[[Category:Theory]]